A Morphing Wing used Shape Memory Alloy Actuators New Control Technique with Bi-positional and PI Laws Optimum Combination - Part 2: Experimental Validation

نویسندگان

  • Teodor Lucian Grigorie
  • Andrei Vladimir Popov
  • Ruxandra Mihaela Botez
  • Mahmoud Mamou
  • Youssef Mébarki
چکیده

The paper represents the second part of a study related to the development of an actuators control system for a morphing wing application, and describes the experimental validation of the control designed in the first part. After a short presentation of the finally adopted control architecture, the physical implementation of the control is done. To implement the controller on the physical model two Programmable Switching Power Supplies AMREL SPS100-33 and a Quanser Q8 data acquisition card, were used. The inputs of the data acquisition were two signals from Linear Variable Differential Transformer potentiometers, indicating the positions of the actuators, and six signals from thermocouples installed on the SMA wires. The acquisition board outputs channels were used to control power supplies in order to obtain the desired skin deflections. The control validation was made in two experimental ways: bench test and wind tunnel test. All 35 optimized airfoil cases, used in the design phase, were converted into actuators vertical displacements which were used as inputs reference for the controller. In the wind tunnel tests a comparative study was realized around of the transition point position for the reference airfoil and for each optimized airfoil.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Morphing Wing used Shape Memory Alloy Actuators New Control Technique with Bi-positional and PI Laws Optimum Combination - Part 1: Design Phase

The paper presents the design phase of the actuators control system development for a morphing wing application. Some smart materials, like Shape Memory Alloy (SMA), are used as actuators to modify the upper surface of the wing made of a flexible skin. The actuations lines control is designed and validated using a numerical simulation model developed in Matlab/Simulink. The finally adopted cont...

متن کامل

Hysteresis Modeling, Identification and Fuzzy PID Control of SMA Wire Actuators Using Generalized Prandtl-Ishlinskii Model with Experimental Validation

In this paper, hysteretic behavior modeling, system identification and control of a mechanism that is actuated by shape memory alloy (SMA) wires are presented. The mechanism consists of two airfoil plates and the rotation angle between these plates can be changed by SMA wire actuators. This mechanism is used to identify the unknown parameters of a hysteresis model. Prandtl–Ishlinskii method is ...

متن کامل

Morphing Wing Real Time Optimization in Wind Tunnel Tests

In this paper, wind tunnel results of a real time optimization of a morphing wing in wind tunnel for delaying the transition towards the trailing edge are presented. A morphing rectangular finite aspect ratio wing, having a wind tunnel experimental airfoil reference cross-section, was considered with its upper surface made of a flexible composite material and instrumented with Kulite pressure s...

متن کامل

Morphing Wing Technologies Research

The development of innovative adaptive structures on UAVs (and UUVs), such as morphing wings, can potentially reduce system complexity by eliminating control surfaces and their auxiliary equipment. This technology has the potential of allowing a UAV to adapt to different mission requirements or executing a particular mission more effectively. The first part of the paper deals with a review of m...

متن کامل

A hybrid fuzzy logic proportional- integral-derivative and conventional on-off controller for morphing wing actuation using shape memory alloy Part 1: Morphing system mechanisms and controller architecture design

The present paper describes the design of a hybrid actuation control concept, a fuzzy logic proportional-integral-derivative plus a conventional on-off controller, for a new morphing mechanism using smart materials as actuators, which were made from shape memory alloys (SMA). The research work described here was developed for the open loop phase of a morphing wing system, whose primary goal was...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010